Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606901

RESUMO

Y chromosomes are thought to undergo progressive degeneration due to stepwise loss of recombination and subsequent reduction in selection efficiency. However, the timescales and evolutionary forces driving degeneration remain unclear. To investigate the evolution of sex chromosomes on multiple timescales, we generated a high-quality phased genome assembly of the massive older (<10 MYA) and neo (<200,000 yr) sex chromosomes in the XYY cytotype of the dioecious plant Rumex hastatulus and a hermaphroditic outgroup Rumex salicifolius. Our assemblies, supported by fluorescence in situ hybridization, confirmed that the neo-sex chromosomes were formed by two key events: an X-autosome fusion and a reciprocal translocation between the homologous autosome and the Y chromosome. The enormous sex-linked regions of the X (296 Mb) and two Y chromosomes (503 Mb) both evolved from large repeat-rich genomic regions with low recombination; however, the complete loss of recombination on the Y still led to over 30% gene loss and major rearrangements. In the older sex-linked region, there has been a significant increase in transposable element abundance, even into and near genes. In the neo-sex-linked regions, we observed evidence of extensive rearrangements without gene degeneration and loss. Overall, we inferred significant degeneration during the first 10 million years of Y chromosome evolution but not on very short timescales. Our results indicate that even when sex chromosomes emerge from repetitive regions of already-low recombination, the complete loss of recombination on the Y chromosome still leads to a substantial increase in repetitive element content and gene degeneration.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Genoma de Planta , Rumex , Rumex/genética , Cromossomos Sexuais/genética , Recombinação Genética , Hibridização in Situ Fluorescente
2.
Mol Biol Evol ; 38(3): 1018-1030, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095227

RESUMO

Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.


Assuntos
Evolução Biológica , Cromossomos de Plantas , Recombinação Genética , Rumex/genética , Cromossomos Sexuais , Genoma de Planta
3.
IMA Fungus ; 8(2): 299-315, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29242777

RESUMO

An international survey of house dust collected from eleven countries using a modified dilution-to-extinction method yielded 7904 isolates. Of these, six strains morphologically resembled the asexual morphs of Aureobasidium and Hormonema (sexual morphs ?Sydowia), but were phylogenetically distinct. A 28S rDNA phylogeny resolved strains as a distinct clade in Dothideales with families Aureobasidiaceae and Dothideaceae their closest relatives. Further analyses based on the ITS rDNA region, ß-tubulin, 28S rDNA, and RNA polymerase II second largest subunit confirmed the distinct status of this clade and divided strains among two consistent subclades. As a result, we introduce a new genus and two new species as Zalariaalba and Z. obscura, and a new family to accommodate them in Dothideales. Zalaria is a black yeast-like fungus, grows restrictedly and produces conidiogenous cells with holoblastic synchronous or percurrent conidiation. Zalaria microscopically closely resembles Hormonema by having only one to two loci per conidiogenous cell, but species of our new genus generally has more restricted growth. Comparing the two species, Z. obscura grows faster on lower water activity (aw) media and produces much darker colonies than Z. alba after 7 d. Their sexual states, if extant, are unknown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...